THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2055 Tutorial 2 (Sep 21)

Ng Wing Kit

1. For a set S of numbers, a member c of S is called the maximum of S provided that it is an upper bound for S. Prove that a set S of numbers has a maximum if and only if it is bounded above and $\sup S$ belong to S. Give an example of a set S of numbers that is nonempty and bounded above but has no maximum.
2. Let $S=\left\{1-(-1)^{n} / n: n \in \mathbb{N}\right\}$. Find $\inf S$ and $\sup S$.
3. Suppose that A is a nonempty set of real numbers that is both bounded above and bounded below, and that $\inf A=\sup A$. Prove that the set A consists of exactly one number.
4. Show that if A and B are bounded above in \mathbb{R}, then $A \cup B$ is a bounded above. Show that $\sup (A \cup B)=\sup \{\sup A, \sup B\}$.
5. (Optional)For a function $f(x)$, we can define another function

$$
f^{*}(p)=\sup _{x \in \mathbb{R}}\{p x-f(x)\}
$$

If $g=e^{x}$, calculate g^{*} and $g^{* *}$.

